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’ ABSTR

\.
Using Lie series the solution of the equation describing the
heavy asymmetric gyroscope is presented in the forms:
A) Solution = Solution(heavy, symmetric) + contributions
from asymmetry.
B) Solution = Solution (symmetric, forcefree) + contributions
from asymmeiry and forces.
C) Solution = Solution (asymmetric, forcefree) +
y contributions from forces.

The 1-st term on the right sidc is presented in
global form and thc 2-nd term, an intcgral term, can be
computed by iterations.

Which of thc aforementioned reprcsentations

is most suitable, depends on the problem considered.
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1. Introduction

We consider an asymmetric gyroscope with several torque pro-
ducing forces. A spinning satellite is essentially such a gyroscope;
the torque may result in a change in satellite orientation that
affects the thermal balance, the operation of solar cells and various
scientific measurements.

By means of an operator we can represent the solution of the
heavy asymmetric gyroscope such, that the contributions of the diffe-
rent torques appear separately. In other words, using a splitting
up procedure of the aforermentioned operator we can represent the

solution in the form, €.g.:

£
[8%e) 4
(3 =" N S
-4t % -“global * é:b i LT’ M. f (7, M., N 1) dt +
symmetriec °© a
forcefree
ggﬁ 1 ‘
+ ) 4 £, (7, NIl,_’_}gl)dt
a=a t
o
where (i indicates that this function is represented in

global - “*gl
a global form.

1, 2, 3 ....) appearing in the integral

The torques M; (i
termg usually differ by their order of magnitude. For a given degree
of accuracy, therefore, the number of summation terms a to be com-
puted depends on the integral eonsidered., The afore mentioned solu-
tion representation renders it possible to compute the gingle inte-
gral terms as accurate as necessary irrespective of the other inte-
gral terms.

Especially we shall present the solution of the equation

descibing the heavy asymmetric gyroscope in the forms:



A)

2.

Solution = Solution (heavy, symmetric) + contributions from

agymme try

The 1-st term is exactly known, i.e., there exists a global solu-

tion representation. The 2-nd term can be calculated by iterations.

Solution = Solution (symmetric, forcefree) + contributions from

asymmetry and forces.

The 1-st term is again exactl& known. The 2-nd term can be split

up into several additive integral terms:

a) a term containing the contributions of asymmetry; this term
vanishes if the satellite (gyroscope) is symmetric.

b) additive integral terms containing the torques M, (i=1,2, ..)

E::j’E:T Mifa(r, Mi,_flgl)dr,
o i

i.e. these terms vanish if Mi = 0
Solution = Solution (asymmetric, forcefree) + contributions from
forces.
For the first term a global solution representation exists and
the second term can be computed by iterations.
The problem which of the afore-mentioned solution represemtations
is most suitable, depends on the problem considered. Generally,
one can say, that it is advantageous to put the main contribution
of the solution in the 1-st term and perturbations in the remai-

ning terms.

Solution of the equation describing the heavy asymmetric gyroscope

Using a reference frame (i,y,&) fixed with respect to the body
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the equation of the heavy asymmetric gyroscope reads

M
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where I I2, 13 are the moments of inertia, 1, QZ

QB are the angular velocities, 571, Qz, Q‘j are the angular
accelerations and 1»11, M2, M3 are the torques in the reference
frame (1,2,3). In Eq.(1) we have substituted §,1?, g,

1, 2, 3,

Using the well-known relations

,Q1 = '\":sin?(sini‘~ + ,jcos%

_Qz = @cos)(sinﬁ' - jsinx (2)
C_‘q L)

:_3 = §cos ~ + 7( ’

O
where ¢, ., 7{ are the Eulerian angles defined as follows

/A/'l axis : g\ ; qx' axis Do <x' axis: 7(
\«L,B axis ~ X axis 1 axis
where x,y,z are the axis fixed with respect to the space,
x' indicates the nodal line of the two planes (xy) and (12).
Differentiating jli (i = 1,2,3) in Eg,(2) with respect
to t ( time) and substituting the se quantities into Eq.(1)

we obtain the following equations
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Inserting ) from Eq.(4) into Eq.(3) we obtain
. o 2
" o st O o .
9 + $qaqq + Uy, + JA913 oy, S1q15 + 8,46 = O, (12)
where
oo DT Pag ¥ Paplys - Byghyg
Qu. =
11 1 - h21h13
.. - Byp * Byg = Bpshys = hyghyy
12 1 - h21h13
o Pos * s 7 Mgz~ Paghys e
13 ’1 - h21h13 (13)
. . h,]5 - h,‘i --h25h13
= ; =
15 < hyhy 14 1+ Byhyg
q = e e T
16 1 + h21h13

Inserting ¢ from Eq.(3) into Eq.(4) one obtains

S - .2
f?+-x§q21 + ¢3§22 + 3}@23 T oAy, 555 * S8, = 0 (14)

where . . h22 + hzl - 511§21 - h'4h§l
21 1= hy3hs,
_Bgg 4 Byg - hyohyy - haghyy
22 T
' st (15)
q.. = P2q " Pog T PigP21 7 Paghe;
23 1 - h13h21
@ - hog = Byshyy
24 1 - h13h21
S L B o . L
25 1 - h15h21 26 1 - h15h21

Substituting ¢ in Eq.(5) by Eq.(12) we obtain
Y+ 'éa + ‘2q + éﬁq + Pxq,, + %uq +S5.9,, +S.a.. +
X+ 85 + 0ag, v Jags + $ias, +aixass + 54956 + Sydgg

+ 5,8z =0
3738 (16)



Q59 = hgp + Bgy + Byg = Qpphsy A3 = ~dy30s;
G52 = P33 7 Gagss 36 = “5"3 (17)
U35 = P36 U357 = ~%q6"351
W34 = 11t 38 = 53
Eqs.(12) (14), (16) reads
v & @

t#X24q ¢ ‘P“‘q12 * Rzt Qg+ Syl + Syaye = 0 (18)

9
D? a"‘" Q’(o -2 _
N By + Bag, + Tips + 9 0y + Sq9p5 * Spdpe = 0 (19)

.2 ]
%‘Q:\‘ .2 ot . q"
+ gy + ey, + O Q35 + q7(q34 + "75.9‘35 + 52q36 + (20)

e
- b « 4 3 -
q'i,j = qu(-\"@:X) 3 1,5 = 12,0000, (21)
s : .
5, = Si(u,Q,K> s 1= 1,2,3
Eqs.(18), (19), (20) can be written in the form
L) . .1, r\.ﬁ
p =f° (CP 3!7(:‘%:”7{)
o=t (w,v,/\ (P,,, (22)

X= fB((P . ,]\,‘P’J ,%)

For the forcefree, symmetric gyroscope, i.e., = 0,

3
5, =0 (i=1,2,3) (sece Eqs. (1), (9), (11) ), Eq.(22) reads

,

(';; = f”fs(@y 7\!@9\’7&)

%‘ 2ffs(‘P,~,]{’cP’~) A)
X 3ffS T ’cp’f\ )’%)!

where f ( =1,2,3) indicates {orcefree, symmetrlc

(23)

1t

For the forcefree asymmetric gyroscope i.e., Si=0; (i=1,2,3)

(see EBas.(7), (9), (11) ), Eq.(22) reads




-

1ffa(q>,~,7(,@,~,x)

sza(ﬂo, 1}\’(?n’7\ (24)
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where fiffa indicates the forcefree, asymmetric case.
For the symmetric heavy gyroscope, i.e.,;L3=O (see Eq.(11)),
Eq.(22) reads

1511(‘?%9)\’(?% ’)&)
2Sh(cp’ ’7-( (P’\’A) (25)

1., . ok

7( = BSh(cP’““%’(P’V ’/\)

Eq.(22) can be written in the form

s NN
Z1. (p1 = (P2 4 \/2 = f2
* (W01 [N * ‘.
B3t pig =g Zgike = T3

The sign ":" indicates that ¢1 = Z1, Cef.
For domains, where f. (i=1,2,3) are holomorphic the formal

solution of Eq. (26) rcads /1/,/8/ (see appendix):

Zl = Zi ’ (27)
where o
3 R 3 3 )
D=2y + f, 4+ i+ —=—+Y, =+ F
20z, 13z, 20z, 2 624 /\2625 303z, (28)

A) Representation of the Solution S_in the Form S = S .
T e i = symmetric,

heavy + Contributions from Asymmetry.

Starting from Eq.(22) we obtain for the operator D /1/

Doogld— sl iy, L Sy g T
29z, T ~20m, " X2 9z; T T1shdz, * “2shdzg * " 3shdzg




3 9 3
+ f1aaz2 + f2aaz4 + f}aaz6 ’ (29)

where f, (i=1,2,3) indicate the contribution from asymmetry

and £, (i=1,2,3) indicates the symmetric, heavy case.

We write now the operator D in the form

. D = D1 + DZ’
where 0 a___ o)
D, = f1aaz2 + f2aaz4 * fBaaz6 ’ (30)

and D, is defined by (29). The solution Eq.(27) reads in
this case

) t(D1+D2)Z tD

Z, = e zZ., = ¢€ . o= € z. +
i i i i

N ft-Ti S
"o*"tf Ey a0 23) - 97
o a

The subscript a indicates that after applying D,D on z,,
z; das to be replaced by etD1zi. In BEq.(31) the operator D,
is the operator for the symmetric heavy gyroscope

The sclution representation is recommandable, if the deviations
from the symmetrc gyroscopr are small. In this case only few
terms of the sum in Egq.(31) have to be taken into account.
For the evaluation of the integral appearing in Eq.(31) suitable
methods are already developed /6/,/7/; in these works alsu
the problem of err estimation is treated.

Moreover we will use another method for solving Eq.(1),

as proposed by GROEBNER /2/. For that we put

I “ ’
3
where 1is a parameter., Using this parameter we obtain
»*
i, =855, (i=1,2,3) and the operator D reads

I}
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D = D1 + D2 = D1 + gDz s, where the operator D2 reads
_ * 0 ¥ 9 ¥ 0
D2 h f1aaz2 f23624 * Saaz6 ! (33)

where D, and D_ are given by Eq.(29) and Eg.(3%0),
4

respectively. With (27) the solution reads

* "f
t(D.,+D t(D,+¢D N
Zi = e ( 1 2)zi = e ( 17E Z)Zl = iiz,g (t,z, ) =
j=o
< (34)
= g (t,2,) + 2 s,
j=1" Y
tD1
where go(t,zi) = e 'z, and g3, can1 be calculated by

the following recurrence formula/2/

J+1(t Z. ) }ﬂszg (1,2, ) (35)

z,->8, (t~7,2, )

The subscript zi_ﬁgo(t—r,zi) indicates that after applying

the operator D, on 851 23 has to be replaced by go(t-r,zi).

2
The proof of formula (34) and formula (35) is given in the

work by GROEBNER /2/. D, is the operator for the heavy symmetric

1
gyroscope for which a global representation exists.
Since the quantity defined by Eq.(33) is usually small

the factor t? (3 = 1,2,3....) influences the convergence

in a favorable way.

B) Representation of the Solution S_of Eq.(1) in the Form

B e - ,-* -

S = Ssymmetric, forcefree T Contributions From Asymmetry

and Forces.

In this case we write the operator D in the form



- 1o =~

) ™9 3 3 3 3
D=9 7+ Agi— + Yoo+ = + f —— + f —
2621 2az3 _XEazs 1sffaz2 2sffaz4 BSffaz6
3 3 Gl 9 ) 3
+f,, ==+ f — <+ f,, =+ f, 7T+ f, ==+ f, T
1h32 2haz4 Shaz6 1a622 2aaz4 3a6z6 ’
(36)
where fih (i=1,2,3) indicate the contribution of the
external force (heavy), £, pp and £, (i=1,2,3) are
explained above., Wwe put now
D = D1 + Dha’ where
o) 0 o) 3 o) o)
D, =f, S5—+ f_ =+ f, == 4 £ =4 f === 4 f, -
ah ‘lhaz2 2haz4 3h 2 1a322 2aaz4 38626
(37)
and D, is defined by Eq.(36). Solution (27) reads in our
case oot
tD t(D,+D, ) tD  f X4
Z.-e z, =8¢ | B, _o Tu 4 \>' !“ij:ﬁ)'ﬂ) Dz dv
i i i 1 5,~‘/ X! {—ha j
O -
t b
o)
(38)

D1 is the operator for the symmetric forcefree gyroscope,
tD

i.e., e zZy is the solution of the symmetric forcefree

gyroscope.
Taking account of the different torque acting
on the gyroscope M1, M2 and M5 in Eq.(1) reads
= 5 e M = P Y R N
M1 = 31M1i’ M2 = LWMZi’ M3 = LTMBi
i i i

indicates the different torques.

,Whel‘ei=1,2,----- (39)

Congsidering a satellite considerable torques are,
e.g.: The gravitational torquc, the drag torgque, the torque
caused by radiation and the magnetic torgues. Splitting off the

operator Da =D + D where

h a h’




3 o) 9
D =f, =+ f, == 4 f_ = (40)
a 1a822 2aaz4 Saaz6
ol 9 0
D, = f, o+ f + £, == (41)
h thdz Z5 2hdz 4 Bhaz6
D, again can be written in the form iu' 1h (1=1,2,3....) =
Dh’ where 1
9 o__. S . .-
Din = fianszy * To1m3e 7 * T3inpa, ¢ 1=10%0ee e (42)
2 4 6
and fy1y = 85195 5 fp1, = Sq195 * Sp1967 T3y = Sq1%37 *
S3193g (43)
BEq.(38) has now the form
\_, ¢ [
tD < T </
Z., = e 1z. A / £‘*’mlﬁ) Dz dt + "J;—-"XLD Dz dt
i i < _ Eg “ Ari£Thl
o) to b o t "1 b

(44)

The subscript b indicates, that after applying the operator,
zZ. has to be replaced by etD A The last integral term in
Eq.(44) vanishes if My (i=1,2,3) is equal to zero. The
solution representation Eq.(44) enables us to evaluate the

single integral terms numerically independently from the other

terms.

C) Representation of the Solution S of Eq.(1) in thc Form

S =38 . + Contrlbutlons From Forces
asymmetric,forcefree = -—=-

In this case we write the operator D in the form

D = D1aff + Dh’ where the operator D1aff reads
&
3 3 5 3
Dyasr = P25a xza Azaz sff622 M f2sffaz4 + fssffaz6 *
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0 3 3
+ f1aaz2 + f2aaz M f3a8z6 (45)

3 . D 3
Dy, = f1haz2 + f2haz4 + fshaz6 (46)

The solution (27) reads in this casc

tD

8(Dy, £¢+0) 1aff
e Z = e Z

T L :x!’ Dthﬂ T (47)

D1aff is the operator for the asymmetric forcefree gyroscope

for which a global solution representation exists/3,4,5/.

tD
. 1aff caa
Putting e zi = Zi1 and splitting off the operator D1aff

in the form D + &ﬁz, where D, is defined by (33)

laff = D

and I)1ff is defined by Eq.(45), we obtain the solution in the
form

* eV

tD (B, . o+5D,) ;-

Z,, = e 1affz. = e [ 2 zZ. = Z g (t,z. ) (48)

i1 i i

[
N5 4 . .
go(t,zi) + L:;t’gj(t,zi) » where g_ is given by the relation
J=1
tD

t
1f£
go(t,zi) = e z. and g5, (t zZ, ) = tng (v,2. )idT

i
Z, —ag (t 2. )
t
° (49)
With Eq.(48), Eq.(47) reads

tD1ff = o
Z, = e zg + t} g (t,2. ) + ,> —_L?ZTLT at

J=1 - a

(50)

where D1ff is the operator for the forcefree symmetric

gyroscope.

€
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If several external forces are present we obtain in analogy

to Eq.(44) the solution Eq.{(50) in the form

tD = 3 M-,‘ X x
Z, = e HE, > '8 (t,z. ) > L‘ﬁé-"f—h;_p Dz.g at

o} to ‘a (51)

This representation is advantageous insofar as it contains
several additive integral terms, which can be computed separately.
The number of summation terms o = 0,1,2,... decpends on the ordecr
of magnitude of the torquc appacring in the operators Dhl
(1=1,2,......). For the numerical cevaluation of the intcegral
terms we refer to the work by H.KNAPP /6,7/, where also the
problem of error estimation is treated.

Concerning the stability of the solution
of Eq.{1) we refer to the books by KLBIN ¢. and A. SOMMERFELD/4/

and by R.GRANMMEL /5/, in which this problem is treated in detail.
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APPENDIX

Lie Series Method for Solving Differential Equations

— - - ~

Although the Lie series method for solving differential
equations is alrcady presented in several publications /1/, /8/,
e.g., we will repeat here the esscntial points of this method.
For proofs we refer to the book by GROLBNER /1/.

An ordinary diffcrential equation of order n given by

20 (4) - £k, 2, 21, 2%, eeeeen, 201D (A-1)

can be written in the form

z) = f1(t,Z1, Zoy wenns zn)

|
Z2 = f2(t,z1, Zz, * 0 ey Zn) (A—2)
zZ! = fn(t,z1, Zpy eoees zn)

Assuming the functions fi(i=1,2,.....,n) to be analytic the

formal solution of Eq.{(A-2) reads

Z, = ) o7 Dz, (A-3)

(i=1,270'-0’n)
The small letter N in (A-3) indicates, that after applying
the operator D the functions z5 (i=1,2,.....,n) have to be

replaced by initial values. The operator D is defined by the

relation ol
N\ 3 . .
D= 7 Fya and ; is defined by (A-4)
i=0 i
C){\ C‘«;\'
~y o= 2fend o= B =t = (4-5)

Eq.(A-6), however, is only valid for non-autonomous systems
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i.e., for systems where the functions fi(i=1,2,....,n) contain
QA
the linear independent variable t explicitely, otherwise ﬁé=0.

As an example we will solve BEq.(26). This equation

reads
21 = 9% é4 =1,
.zz =1 é5 =Xz (4-6)
o 3 -,

The solution reads
tD 2% o
Z, e z, K;'t Daz.,
i i/ i (A-7)

(o)

]
1

where the operator D is according to (A-4) and (A-5) given by

the relation
(\

3 5 ™
D= Y29z, * f1az2 * 3z 3 2az + %az 3626

(a-8)
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APPENDIX I

In the book, "The General Problem of the Motion of
Couplcd Rigid Bodies About a Fixed Point",by E. Leimanis,
Springer Tracts in Natural Philosophy, Vol.7, 1965, p 133,
the Euler Poisson equations of motion are solved by Lie Series.

These equations read

RN S -\
Lisdy + (I = I8 8 = ne(fz, - ¥y,)

/"1 - Y. - - - T-
I,4l, + (I1 IB)L.1,.3 = mg(}xo :izo) (A1-1)

(' - D) -
13;23 + (12 I1)“,‘,_,3 mg(ayo {;Xo)

. _ )'A _ "‘j
& = ;)ola \{.512
iig = X’Q1 - 0(.'./‘5 (AI‘2)
. - N,
=l - pl

where Ii are the moments of inertia,ggi are the angular
velocities, 1,2,3 indicate the axis fixed with respect to the
body, m is the mass of the body, gm is the weight of the body,

r, = (xo,yo,zo) indicates the position of the mass center.

(x,y,z) denote the reference frame fixed with respect to the
body, o, , are the direction cosines of a fixed axis (Z axis
of a space fixed reference franme, e.g.) with respect to x,y,z.

E. Leimanis represents the solution of Egs.(AI-1) and (AI-2) in the

tD -~ £y 1 a
form Z, = ez, where 7, ~;)1, Zy =y, Iy -;13, Z4 = a,

Ze =3, Zg =V and the Lie operator D reads

5

{

I,.-1 -
~ e e a Ld
D = {%f-(ﬁzo - ‘Syo) - -2—-;3‘7 NBJ—%—AT + M(Y'X - 0z ) =

I.-I, ., ‘ . I.-1 ; ~
___1_._—1‘.1 Q -—a—.-.- + ay = ¥ ) - 2 1"’) 2 ’ _Q,.__ +
3 13 o F'o
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As shown in this paper we have solved the Euler equation con-
taining not only a term for the gravitational torque, but also
several other terms corresponding to other torques (drag torque,
centrifugal torque, e.t.c.). Farthermoreyas far as the solution
representation is concerned experience /6/ has shown, that a repre-
sentation as it was given by E. Leimanis is not recommendable
for numerical computation. A rearrangement of the series etDz.

1
t(D1+D2)Z tD,

by splitting off in the form e = e Z4 + R, as it was

5
done in this report, influences the numerical evaluation in a
favorable way, if, e.g., etD1zi'>%>R.

Referring to the solution representation presented
in this report (see Eqs. (31), (38), (44), (47)) we emphasize
that the numerical usefulness of these representations depend on

the problem considered. The effectiveness of the aforementioned

method depends highly on the skill to rearrange the series.
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